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We have found a modification of the variable phase method which can significantly 
decrease computational time, and at the same time, gives stable solutions except in 
energy regions close to reasonances. In particular, by redelining the phase of the variable 
phase method, we can obtain a first-order, nonlinear differential equation for the rede- 
fined phase, whose solution is relatively slowly varying, which thus allows rapid numerical 
integration. The similarity of this redefined phase to the JWKB phase is pointed out, 
and this modified variable phase method is compared with other well-known methods 
of numerically calculating phase shifts. 

I. INTRODUCTION 

At the present time, there are several general methods being used for the 
numerical calculation of phase shifts or the S-matrix. These are the JWKB 
approximation, some form of Green’s functions [l], direct numerical integration 
of the SchrSdinger Equation, such as in the method of Numerov [2], or the recent 
method devised by Gordon [3]. All of these methods, except for the first, are exact. 
However, it is generally conceded that in its range of validity, the JWKB approxi- 
mation is the fastest means of calculating phase shifts, since it involves only 
calculating a slowly varying integral. Consequently, if one could devise an exact 
method involving slowly varying quantities which would also reduce to the JWKB 
approximation in the appropriate limit, then one would have (i) a very rapid 
method of calculating exact phase shifts in the range of validity of the JWKB 
approximation, (ii) a rapid method which should be comparable to the other 
methods in the long wavelength limit. Such a method has been found and it will 
be the purpose of this paper to present it and to compare it qualitatively with the 
other methods. 

A method similar to ours has been developed by Kouri and Curtis [4] whereby 
they treat the quantum-mechanical Hamilton-Jacobi equation exactly. However, 
the functions involved are not slowly varying (particularly near the classical 
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turning points). This difficulty can be rectified by instead combining the JWKB 
method with the variable phase method [5], in such a manner that the resulting 
equations will be exact (as in the variable phase method), and the quantities 
involved will be relatively slowly varying (like the JWKB phase). To see how this 
can be done, one only needs to compare these two methods. 

Briefly, in the variable phase method, one decomposes the radial wave of the 
Schrodinger equation into an amplitude and a phase, which has the advantage that 
in general, both of these quantities will be more slowly varying than the radial 
wave. In this respect, this method is similar to the JWKB method [6], but unlike 
the JWKB method, no terms are neglected, and the resulting equations are exact. 
Another significant difference between these two methods is the manner in which 
the phase is defined. In the JWKB method, the phase is defined so that its slope is 
equal to the inverse of the de Broglie wavelength, while in the variable phasemethod, 
the phase is defined in terms of the phase shift of a “truncated” potential. Although 
this last definition is of considerable theoretical value [5] and at the same time is a 
very natural definition, for numerical calculations, it is in general not the best choice 
to make. This is because this definition of the phase can give a “step-like” structure 
to the phase, particularly for attractive potentials at low scattering energies [7]. 
Thus in the cases, the calculational time should not be significantly better than that 
of a simple direct integration of the Schrodinger equation, since the higher deriv- 
atives of the phase will be relatively large. Finally, one should note the comparison 
of the variation of this variable phase with the JWKB phase, As long as the 
potential is smooth and slowly varying, the slope of the JWKB phase will be 
smooth and slowly varying, thus resulting in significantly smaller values for the 
higher derivatives of the phase than in the case of the variable phase method. 

Obviously, if one would redefine the phase of the variable phase method so that 
it would be slowly varying like the JWKB phase, then one could numerically solve 
for the phase much more rapidly, since the “step-like” behavior would be elimi- 
nated. As far as is known to this author, such an approach has not been tried 
before, and it appears to be a simple means of rapidly calculating phase shifts. 
We will call this approach the “modified variable phase” method and will hereafter 
refer to it by MVP, and to the standard variable phase method by VP. 

By means of a simple example, the value of a MVP method over the VP method, 
for computational purposes, can be quite vividly illustrated. Consider S-wave 
scattering by an attractive square well. As is well known, the interior solution is 
of the form y = A sin(ki) where K2 = (2m/@) I V,, 1 + k2. In the VP method, one 
defines the phase by 

Y = A,, sin q& , 
Y’ = A& ~0s A,, 

(l.la) 
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which results in the differential equation 

(1.2) 

The basic features of the solution of this equation can be readily deduced by 
considering the limit of K > k. When &,, is equal to about nrr (n = integer), 
the slope of the phase is very small and approximately equal to k. When &, is 
approaching (n + &)rr, suddenly the slope takes on a very large value of approxi- 
mately K2/k > k, causing the phase very rapidly to approach (n + l)~, where 
the slope then drops back to k, giving a “step-like” structure. Consequently, any 
attempt to integrate (1.2) numerically would require much smaller increments 
whenever &, ‘v (n + 4)~ in order to preserve accuracy, causing a significant 
increase in the computational time. 

On the other hand, if the “step-like” structure could be eliminated, then the 
increments would not need to be decreased, and the numerical integration could be 
done much faster. One way to do this would be to define the phase in the following 
general manner instead of by (l.l), 

(1.3a) 

(1.3b) 

with y arbitrary, except that it must be positive-definite. In particular, if one now 
chooses y = K, one obtains simply 

4 K mv21 = (1.4) 

which is trivial to integrate. Of course, one need not choose this particular value for 
y, but it is only with this choice that the differential equation for the phase has the 
simple form as given by (1.4). Furthermore, one should note that this choice of y 
has resulted in the MVP phase being the same as the JWKB phase. 

Of course, for P-wave scattering from an attractive square well, one cannot hope 
to obtain the simple Eq. (1.4) if the phase is defined by (1.3), because now the total 
potential is not constant due to the angular momentum barrier. But, one can look 
at the general equation for the phase and try to choose a value for y which will 
result in an equation as close as practical to (1.4), so that the slope of the phase will 
be almost a constant. In other words, a suitable choice of y can eliminate most, 
if not all, of the “step-like” structure. Also, it should be mentioned that for 
P-wave scattering, one could obtain (1.4) if one defined the phase in terms of 
spherical bessel functions instead of trigonometric functions. The reason we do not 
consider this definition is strictly for computational convenience, because one can 
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always numerically evaluate a sine function faster than any spherical bessel 
function, particularly for large I values. 

This example has illustrated that one can use the MVP method for numerical 
evaluation of radial waves and obtain a significant increase in computational 
efficiency over the VP method. To do this, one must redefine the phase of the VP 
method in such a manner as to put it as close to the JWKB phase as possible. 
Thus, another way of looking at the MVP method is to consider is as a blend of 
the VP method and the JWKB method, in that we take the definition of the phase 
to be essentially the JWKB phase, but at the same time, we use the exact equations 
of the VP method. Of course, when this is done, one can no longer interpret the 
phase as being related in a simple manner to the phase shift of a truncated potential, 
but for calculational purposes, one does not care what the truncated potential is. 
One only wants to know what the phase shift of the complete potential is. 

In Section II, we present a derivation of the MVP method and decompose the 
radial wave into an amplitude and a phase. We then obtain first-order, nonlinear 
differential equations for the phase and amplitude which are identical in form to the 
analogous equations of the VP method [5]. However, they differ in two important 
respects from the VP equations. First, in order to minimize computational time, 
spherical bessel functions are not used. Instead, only the simple trigonometric 
functions are used. Second, the exact definition of the phase is allowed to be quite 
general by introducing an auxiliary function y, as was done in (1.3). Now the 
problem is to specify the function y in such a manner that the slope of the phase 
will be as slowly varying as practical. This is considered in Section III, and it is 
found that by choosing particular simple choices for y, the MVP phase can be 
made approximately equal to the JWKB phase, except near the turning points. 
And, with a particular choice of y in the region of a turning point, one finds that 
there is no difficulty in integrating the MVP phase through a turning point, as is 
likewise the case in the VP method. 

In Section IV, the solution for the MPV phase in the region about r = 0 is 
discussed. Here, since the MVP phase differs from the VP phase, the initial 
condition on the MVP phase will differ significantly from that on the VP phase. 
In particular, the initial value of the MVP phase will be generally nonzero. In 
Section V, the behavior of the phase as r + GO is studied. It is here noted that upon 
specifying an acceptable absolute error in the phase, from a certain value of r out 
to infinity, the calculation of the MVP phase becomes identical to that in the 
JWKB method. We then make use of this fact to transform the nonlinear differential 
equation for the MVP phase into an expression which gives the phase in terms of 
the JWKB integral. Furthermore, from this expression, one can readily see that in 
the short-wavelength limit, the MVP method reduces to the JWKB approximation. 
Finally, explicit expressions are given for obtaining the phase shifts. 

In Section VI, the stability of the solutions for the MVP phase is discussed, as 
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well as means of calculating the propagated errors. In Section VII, we consider the 
advantages and disadvantages of the MVP method, and compare this method 
with other numerical methods. 

II. THE MODIFIED VARIABLE PHASE EQUATIONS 

First, in atomic units where !l = m, = e = 1, the SchrGdinger equation for the 
I-th radial wave is 

[-&7&-g + v> - E] Y&> = 0, (2.1) 

where M is the reduced mass of the system, V(r) is the potential, L2 = l(l + l), 
and E is the energy, assumed to be positive. Upon defining the wave vector k by 

Eq. (2.1) can be cast into the canonical form 

where 
v; + Up) Yz = 0, (2.3) 

p z kr, 

X,(p) = 1 - U(p) - s, 

u(p) = %GWE> 

(2.4a) 

(2.4b) 

(2.4~) 

and the primes indicate differentiation with respect to p. 
Providing that V(r) - 0 as r -+ co, then eventually y1 will start oscillating about 

zero with a slowly varying phase and a slowing varying amplitude. As was done in 
the Introduction, we will define the amplitude and the phase by 

tan 4 s ~WYZ’), (2Sa) 

A E ya/sin 4, (2.5b) 

where y is the auxiliary function to be specified later. Of course, A and 4 will be 
dependent on the value of 1, and strictly speaking, we should attach subscripts to 
them. But, to keep the notation simple, we will omit the subscripts, and simply 
note that these quantities do depend on 1. Of course, in practice, one would do the 
calculation for only one 1 value at a time. 
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Assuming that y remains positive-definite and finite, then Eqs. (2.5) imply a 
relation between A’ and 4’. Differentiating (2.5b) and using (2.5) to eliminate y1 
and yI’ gives 

A’ = A(y - 4’) ctg 4. W-9 

Now, differentiating (2.5a) and using (2.3), (2.5), and (2.6) gives us the following 
first-order, nonlinear differential equation for the phase. 

4’ = y + (y’ly) sin 4 cos 4 + (Wy - y) sin2 9, (2.7) 

where we are now also omitting the subscript of h. Finally, from (2.6) and (2.7), 
once the phase is known, the amplitude is given by 

4~) = &PJ exp [- Jlo ~0s 4Kr’h) ~0s 4 + @/r - Y) sin $I+]. (2.8) 

The problem of solving the second-order, positive energy Schrodinger equation 
has now been reduced to the problem of solving the first-order nonlinear Eq. (2.7). 
In order to solve this equation reasonably rapidly, we must consider the effects 
of the choice for the function y on the solution of (2.7). 

III. AN OPTIMUM CHOICE FOR y 

As can be seen from Eq. (2.5a) as long as y is positive-definite, I# = no- 
(n = integer) corresponds to a zero of y, , while 4 = (m + &r (m = integer) 
corresponds to a zero of y,‘. Now, for any specific solution of (2.3), these points 
are uniquely fixed. Consequently, the only effect that y can have on the solution 
of the phase is to modify the behavior of the phase between these points. In other 
words, the solution for the phase between the points (b = nr and # = (n + 8)~ 
will depend on the choice of y, but regardless of the choice of y, as long as it is 
positive-definite, all solutions will pass through the point 4 = nrr at the same value 
of p and also through the point $ = (n + +)n at another value of p. Thus, over 
a range of d + = +T, we can modify the solution at will by adjusting the function y. 
Of course, if we knew the solution in advance, we could solve (2.5a) for that 
particular y which would then cause 4 to have a constant slope over a range of -&T, 
and in this case, we could immediately integrate (2.7) using a step size corresponding 
to 04 = &r. But we don’t know the solution in advance, and therefore we cannot 
hope to find that particular y which will give 4” = 0, which would be therefore 
the best value to use. What we can do, though, is to look for a simple choice of y 
which will put us close to this optimum value. If we are sufficiently close, then 4 
will have an almost constant slope and no significant oscillations. 
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Consider now Eq. (2.7). Over the range of 04 = $r, the trigonometric functions 
execute a rapid motion, varying from zero to about unity. Thus, if y and X are 
roughly constant over this range, then we want to choose y such that the amplitudes 
of these trigonometric terms are a minimum. This is the choice that we will make, 
and to do this, it is necessary to consider three cases, depending on whether h(p) 
is strongly negative, close to zero, or strongly positive. 

First, consider the case when h is strongly negative, and by “strongly”, we mean 
that the following condition is satisfied. 

(Note that when this quantity is much smaller than unity, the WKB approximation 
is valid.) 

Consider the last term in Eq. (2.7). When X is negative, although there exists 
no choice for y which will cause this term to vanish, there does exist a choice 
which will minimize it. This choice is 

and with this choice, Eq. (2.7) becomes 

bI’ = ~4 - 2 sin2 A> + h’hd sin 41~0s & , (3.3) 

where the subscripts I in Eqs. (3.2) and (3.3) tells us that these equations are to be 
considered valid only for Case I where X is strongly negative. This is just about the 
best that one can hope to do in this case, which contains the classically forbidden 
regions, because with the choice (3.2), due to Condition (3.1), the largest term in 
Eq. (3.3) will be the first term, which is the term that we have already minimized. 

Although Eq. (3.3) does contain a sin2 +r term, a little thought indicates that this 
term will never cause more than one-half of an oscillation in &‘. This is because if we 
can neglect the last term in (3.3), the points $r = r/4 and 57r/4 are stable points 
while the points +r = 37~14 and 77~14 are unstable points. And due to the nature of 
(3.3), the solution for $r will exponentially approach the nearest stable point with 
a zero slope. Thus, in a classically forbidden region, + will change at most by $r, 
and the longer it is in this region the smaller will its slope become. Of course, 
inclusion of the last term of Eq. (3.3) will modify the exact numbers somewhat, 
but the basic features will remain unchanged. Also, since we know that in the 
classically forbidden regions, the solution of (2.3) is a linear combination of 
exponentially increasing and decreasing functions, it is exactly this type of behavior 
for the phase that we would expect. 

Next; let us consider the case when h is strongly positive, which contains the 
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classically allowed regions. In this case, we can find a value of y which will eliminate 
the last term of Eq. (2.7) and this choice is 

YIII = 4 

in which case, the equation for the phase becomes 

(3.4) 

& = yIll + (rh/n~d sin #III ~0s &I , (3.5) 

and where the subscripts indicate that these equations are to be considered valid 
only in the classically allowed region, which we call Case III. Again, since we have 
assumed condition (3.1) is valid, the last term in Eq. (3.5) will always be smallea 
than the first term. And, as expected, the phase now has a positive, nonzero slope 
approximately equal to yIII . 

The last case to consider is when condition (3.1) is not valid, and we call this 
Case II. Normally, this case will occur only in the region around a classical turning 
point, but it could also occur whenever the slope of X becomes relatively large. 
Fortunately, for most realistic potentials, this never occurs except at the origin, 
which we will consider in Section IV, and thus we will assume that this case will 
occur only in the region about a classical turning point. Then, since X N 0, as one 
approaches the classical turning point from either a classically forbidden or allowed 
region, it is the middle term in Eq. (2.7) which is starting to dominate when we use 
the previous choices for y. Consequently, in Case II it is this term that we should 
minimize, and to do this, the obvious choice is to choose y to be a constant, which 
we will call G. Then for Case II, (2.7) reduces to 

where 
CJ& = G + (h/G - G) sin2 & , (3.6) 

YII = G. (3.7) 

As to the exact value of G, one would like G to be as small as possible, but not so 
small that the last term in Eq. (3.6) dominates. Since we are assuming that 
condition (3.1) is violated only in the regions about the turning points where h is 
small, we can choose G in the following manner. Take G to be the largest value of 
(1 X l)lj2 whenever (3.1) is false. Of course, an exact value is not critical and as long 
as the potential does not have a steep slope at the turning point, this value will be 
less than unity. 

Now, one notes that if 1 X 1 > G2 due to our choice of G, we have either Case I 
or Case III, depending on the sign of X. Thus, once G is determined, we can 
uniquely define our three cases in terms of G by taking Case II to be those values 
of p where I h I < G2. Taking this definition does have the effect of increasing the 
regions of Case II somewhat, but usually, this will be of minor consequence since 
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for slowly varying potentials, the regions of Case II will be very small to start with. 
Let us summarize how one would proceed to solve Eq. (2.7) numerically. First, 

one would determine where the classical turning points are by noting the zeroes of X. 
About each of these turning points, one would then determine the maximum value 
of (1 )I j)l12 when condition (3.1) is false, and the maximum of all these values 
would then be assigned to G. Now, one has three cases depending on the value of X, 
with the choice for y differing in each case. 

Case 1. Classically forbidden regions, 

X < -GG2, 

y1 Es (-&l/2, 

41’ = YI ~0s 241 + Bh’irJ sin 241 . 

Case II. Turning point regions. 

(3.8a) 

(3.8b) 

(3.8~) 

-G2 < h < G2, 

yII ss G. 

&, = G + (X/G - G) sin2 $,, . 

Case III. Classically allowed regions. 

(3.9a) 

(3.9b) 

(3.9c) 

G2 < A, (3.10a) 

YIII = (W2, (3.10b) 

& = nIr + 8(rhh) sin 2 &I . (3.1Oc) 

Of course, in going from one region into another, r$ and y remain continuous, 
but their slopes will be discontinuous. 

In concluding this section, we want to discuss two possible exceptional cases and 
suggest means for handling them. First, one could have condition (3.1) violated 
for a range of p without a turning point being present, and for this to be so, the 
potential would have to have a very steep slope. (An extreme example of this 
would be a square well potential.) But if this is so, then the magnitude of the 
logarithmic derivative of y will have to be larger than y, which means that y is 
rapidly changing its magnitude over a very small distance. But if the potential is 
everywhere finite, this situation cannot last for too long without either a turning 
point occurring or a singularity developing. Thus, at worst, we can expect con- 
dition (3.1) to be violated only over a very small range of p when ) h I > G2. 
Over this range of p, the last term in (3.8~) or (3.10~) will dominate, but since it is 
proportional to the logarithmic derivative of y, it should never become more than 
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an order of magnitude larger than the first term. What does this mean in terms of 
integrating (3.8~) or (3.1Oc)? It means that over this small range of p, the size of the 
increment should be slightly decreased to retain the desired accuracy, causing a 
slight and probably insignificant increase in the time required for the calculations. 
Thus, unless the potential is truly exceptional, one would not expect to lose a 
significant amount of computational time by taking the definitions of the three 
cases as given in Eqs. (3.8)-(3.10). 

Second, another exceptional case could occur if the value of G turned out to be 
approximately unity or greater than unity. This is undesirable because as p --+ co, 
h + 1 and we would then be in Case II whereas, for rapid computations, we want 
to be in Case III. The simplest way out of this would be to reduce the value of G 
so that it would be reasonably less than unity, say 0.7. This would have the effect 
of increasing the regions of Cases I and III at the expense of the regions of Case II. 
But again, unless the potential is truly exceptional, the amount of time involved 
should be insignificant. 

IV. BEHAVIOR OF THE MVP PHASE AT THE ORIGIN 

As p ---f 0, one of two things will happen. Either X will approach a constant finite 
value, or it will approach &co. If it has a finite limit, then there is no difficulty 
involved. Since ( JQ/~) must approach a finite value and yr’ must be positive as 
p --f 0, the phase must be given by 4 = py as p + 0, showing that the initial value 
of 4 to be used in solving (2.7) is zero. However, more often than not, as p -+ 0, 
;\ will become singular, giving us either Case I or III with X also singular. If we have 
Case III, then we must have a singular, attractive potential which is stronger than 
the repulsive angular momentum potential. If this occurs for I = 0, then as p -+ 0, 
the phase will not approach a finite value, and instead will approach minus infinity. 
This situation is of no physical interest, so we will only consider this case when 
I = 0 and the attractive potential is no more singular than P-~. Then from (3.1Oc), 
if I& is to approach a finite value as p + 0, we must have 

and if p2X approaches zero as p --f 0, due to (3.1Ob), the right hand side of (4.1) 
will be zero, again giving that the initial value of $ is to be zero. But, if 
p2X approaches a positive nonzero value, such is not the case. Let this limit be u2, 
then the right hand side of (4.1) is 2a giving that the initial value of &ii is + sin-l(2a), 
which lies between zero and 7r/4. If a is greater than $, then this value is meaningless 
since our initial assumption concerning the uniqueness of (bin at p = 0 is no longer 
valid. 
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Now, let us consider Case I when X is singular and approaches minus infinity as 
p --+ 0. In this case, 4,’ will always have a finite limit, and from (3.8~) we have 

l$n[tan 275~1 = l/$-2712/~1’]. (4.2) 

Now, if the right hand side of (4.2) is infinite, then the initial value for r#~i is n/4; 
if it is zero, the initial value is zero; and if it is nonzero and finite, the initial value 
will lie somewhere between zero and n/4. The latter will only occur if yr is inversely 
proportional to p, and since this will be the usual case, let us look at it in more 
detail. Specifically, let us only consider the case where as p -+ 0, the potential is 
no worse than coulombic. Then for I # 0, y --f L/p, where 

L = [1(Z + l)]‘/“, (4.3) 

giving 

&(O) = + arctan(21). (4.4) 

With this information, one could now start integrating (3.8~) from some very 
small initial value of Y. However, one must be careful and insure that the initial 
value is not too small, or else one could lose an undesirable number of significant 
figures, due to round-off errors. This is due to the singular nature of y as p -j 0. 
As seen from (3.8c), a strong cancellation must occur between the two terms on the 
right hand side, in order for 4’ to remain finite as p + 0. And if p was too small, 
one could calculate a value for 4 with no significant figures. Of course, one way 
to avoid this in the first place is to insure that the initial value of p is sufficiently 
large. But in some cases, this may not be practical. In this case, what one should do 
is to modify (3.8~) so that the cancellation of the singular terms is done 
“algebraically” instead of numerically. For this purpose, an equivalent form of 
(3.8~) is given below when 

yr = 4 + B(constant). 

First, one notes that the difference between yI and L/p is given exactly by 

Define 

(4.5) 

(4.6) 

(4.7) 
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then one can obtain the following differential equation for x. 

(2Z$ 1) x’ = (3) (pZy1’ - 4Lp2y,Z) 

+ 
cos 2% 
p2yI2 [ g P2U’ + gyg (P2Y12 + Lpyl + P)]. (4.8) 

As can be seen by inspection, all products and ratios in (4.8) remain finite as p --j 0 
when yi is given by (4.5). Thus, if (4.8) is used instead of (3.8c), one need not be 
concerned with possible errors introduced by loss of significant figures. 

Of course, for other singular forms of y, the same general method can be used 
to obtain equations from either (3.8~) or (3.10~) which will again avoid possible 
loss of significant figures. One only needs to substract out the singular parts of y 
as was done in (4.6), and to define a x as was done in (4.7). But in all other cases 
except the one given above, the exact form of the expansions will depend on the 
exact form of the potential as p -+ 0 [8,9]. 

V. BEHAVIOR OF THE MVP PHASE AT INFINITY 

As one integrates the phase from p = 0, eventually one will pass the last classical 
turning point and will be in Case III. Now, y In will start to approach unity with 
a vanishing logarithmic derivative, and thus a point will eventually be reached, 
beyond which the last term in (3.10~) will have a negligible effect. From this point 
on, we can neglect this term, and we are left with the JWKB integral (except that 
Z(Z + 1) is not replaced by (1 + Gj)2). T o see where this point may be, let us define 
the following functions. 

(5.1) 

J = &I’/& , (5.2) 

e-~,,,--+fZ-Zcos2~,,,-Jsin2~,,,. (5.3) 

Then differentiation of (5.3) shows that 0 exactly satisfies the following differential 
equation. 

19’ = yIIr - 1 - J’ sin 24,,* . (5.4) 

Consider the contribution of the last term in (5.4). It is bounded by sr / dJ/dp 1 dp. 
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Let us say that we only want to know the phase, and thereby 8, to an absolute 
accuracy of E. Then if we define fs by 

s O3 / dJ/dp / dp = E 
P 

(5.5) 

for all p > j, we can neglect the last term in (5.4) since it will give a contribution 
less than the acceptable error. 

But, as defined by (5.5), p will depend on the solution. Let us now stipulate that 
we will only consider those values for p beyond which the magnitude of $&/y~n 
is less than one-tenth. Then within 10 %, & = ~~~~ , and easily within an order of 
magnitude, we can approximate J by 

d Y&I J-L-(-). 
%n dP v,, 

(5.6) 

Now, from (5.5) and (5.6), one can determine a p which will be independent of 
solution for the phase. 

So, let us summarize. First, one specifies an acceptable absolute error, E. Then 
using the approximation (5.6) for J, one plots J vs. p from the point where 
1 &r/&, I = 0.1 to suitable large values of p. From Eq. (5.5), one determines the 
value of p. (Note that this integral is nothing more than the total variation of J 
between p and infinity.) Now, one integrates (3.10~) until the point p is reached, 
and then using Eqs. (3.1Oc) and (5.3), one evaluates 13 at p. Now, for all p > j, 
one solves the sufficiently accurate equation 

8’ = y111 - 1. (5.7) 

Of course, if one is interested in the phase as a function of p, then for p > p, 
to obtain the phase from the values of 0 will require solving the transcendental 
Eq. (5.3) for & as a function of 8, which could be done by iteration since I and J 
will be smaller than one-tenth. But normally, one will not be interested in these 
values, and instead one will only be interested in the value of the phase shift, qz . 
For a noncoulombic potential, the phase shift is defined in terms of the phase by 

72 = ~+i$hI - p + h-0. 

And in this limit, since both I and J will vanish, we have from (5.3) that 

(5.8) 

7z = ~+p(d). (5.9) 

For calculational purposes, a more convenient form of (5.7) would be to express 
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0 as a finite integral instead of an infinite integral. To do this we make the 
standard transformation to obtain 

de L2 + u/u2 
z= YIII + 1 ’ 

(5.10) 

where 

Thus 

(5.12) 

where 

u = 1/p. (5.13) 

Finally, the extension to a coulomb potential will be briefly outlined. First, one 
proceeds as before to determine p. Also, the function 19 should be redefined as 
follows 

where 

8, = #qI1 - p + &rl + f ln(2p) - I cos 2#~,,~ - J sin 2+m , 

,CCQM -3 k 

Q = lim(rV(r)). r+m 

As before, one finds that 8, will satisfy the sufficiently accurate equation 

8,’ = yIIr - 1 + ;, 

if p > p. For a coulomb spherical wave, the phase shift is defined by [lo] 

rll = F-2 [&I - p + -$ I - t In 2p - uz 1 , 

where 

Thus 

u1 3 arg[r(l+ 1 + i5)]. 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 
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and a more convenient form of (5.17) is 

dB 
c = (YIII + l)F2 Lx2 + CL2 + ~U/u2)(yn, du 

where 

24 = l/p. 

+ 1 + SU>l> (5.21) 

(5.22) 

(5.23) 

VI. STABILITY OF THE MVP PHASE CALCULATIONS 

As in any numerical calculations, the numbers obtained are only as good as the 
error estimates, thus we must consider the effect of propagation of errors and the 
stability of the solution. From (2.7), we have that the errors in the MVP phase 84 
will propagate according to 

where 

K(p) = (f/r> ~0s 2+ + (47 - r> sin 24. (6.2) 

Since the solution of (6.1) is 

the sign of K will determine whether the previous errors will decrease or increase 
as they are propagated along. 

First let us consider Case I when we can neglect the first term in (6.2). Then if 4 
is in the first or third quadrant, K is negative and any previous errors will decrease 
in magnitude, having a smaller and smaller effect on the final result. But if 4 is in 
the second or fourth quadrant, then K will be positive, causing any previous errors 
to have a larger and larger effect on the final result. As discussed in Section III, 
for Case I, #J will monotonically approach either z-/4 or 5n/4. Thus, if one enters 
a classically forbidden region with the phase in the first or third quadrant, the 
propagated errors will always decrease since the phase will approach the middle 
of the quadrant. If one enters with the phase in the second or fourth quadrant, 
then the propagated errors will increase until the phase enters the first or third 
quadrant, at which time the propagated errors will start to decrease. Of course, 
this is providing that one remains in the classically forbidden region long enough 
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for the phase to switch quadrants. Lastly, if one enters with the phase exactly equal 
to 3~/4 or 77~/4, which are the unstable points, then the phase will remain constant 
and the propagated errors will always increase. This will occur when one is at a 
resonance, because ya is then monotonically approaching zero as p increases, which 
will cause the interior solution to be much larger than the exterior solution. 

Thus, unless one is very close to a resonance, errors propagated through a 
classically forbidden region will decrease in magnitude. In particular, if the point 
p = 0 is in a classically forbidden region, since the initial phase will lie in the first 
quadrant, any errors introduced here will be decreased in magnitude as they are 
propagated along. 

Next, consider Case III, which is the classically allowed regions. Here the phase 
will monotonically increase causing K to oscillate about zero. Normally, since the 
period for the phase will be smaller than the period of oscillations in the logarithmic 
derivative of y, the average value of K over several periods of the phase will be close 
to zero. Thus, in these regions, the magnitude of the propagated errors will remain 
essentially constant. 

In conclusion, most of the time, propagated errors will remain bounded and their 
effects can be quite easily evaluated by simultaneously doing the integral in (6.3) 
while one is solving for the phase. Only when there is more than one turning point 
can the propagated error increase its magnitude, and then only if one is close to a 
resonance. 

VII. SUMMARY 

By redefining the phase of the variable phase method, we have found a relatively 
rapid means of numerically solving for the phase shifts, as well as obtaining the 
positive energy solutions of the Schrodinger equation. In a sense, one can consider 
this modified variable phase method as being a blend of the JWKB approximation 
and the standard variable phase method, in that a new definition of the phase is 
taken from the JWKB method while the exact equations from the VP method are 
used. 

In the MVP method, we introduce an arbitrary function y which can be adjusted 
to minimize the magnitude of the curvature of the phase. In Section III, we show 
the best practical choice of y to be the maximum value of either (I Al 1)1/Z or G, 
where G is a constant to be determined. The prescription for finding G is given in 
Section III and this prescription requires only knowing the potential. Of course, for 
each different value of the angular momentum Z, G will be different since its defi- 
nition depends on the angular momentum. But in practice, for the cases that we 
have looked at (low-energy proton-on-helium and proton-on-hydrogen scattering), 
we have found G to be only slightly dependent on I and that as I increases, G 
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decreases. In this case, one value of G, namely that for I = 0, suffices for all 1 values. 
As one integrates out to infinity, a point will eventually be reached beyond 

which the difference between the exact solution and the JWKB integral becomes 
insignificant in comparison to a specified acceptable error. Thus, beyond this point, 
we may as well use the WKB approximation. The prescription for finding this 
point ,!j is discussed in Section V, and like G, it is also dependent only on the 
potential and the value of the angular momentum 1. Also, like G, it will be either 
relatively insensitive to the value of 1 or slowly varying for the following reason. 
First of all, p must be bounded from below by the last classical turning point. As 
long as the impact parameter (in these natural units where k = 1, it is simply I + 4) 
remains well inside the potential, the last classical turning point will remain 
approximately constant, and normally will just slightly increase as 1 increases. Thus, 
in this case we can expect p to remain fairly constant. As the impact parameter 
increases until it is well outside of the potential, the last classical turning point 
will start to approach the impact parameter, and will then be linearly dependent 
on 1. Now, ,?I must increase also, and as I + cc, p will approach a value just larger 
than the impact parameter, If +. Thus we can expect the variation of p to be of 
the following form. From 1 = 0 to 1 = 1, i; should be fairly constant, while from 
I = 1 to larger values of 1, p should increase linearly as a function of 1 with a slope 
of unity. 

Of course, for both G and p, exact values are not critical, except that G must be 
less than unity, and j should not be less than the value defined by Eq. (5.5). Thus, 
by determining the values for selected values of E, one could quite easily interpolate 
and determine other required values. 

Finally, we want to give a brief discussion, qualitatively comparing the MVP 
method with other methods. First of all, in the range of validity of the WKB 
approximation where k is relatively very large, the MVP method reduced to the 
JWKB approximation. This can be seen from Eq. (5.6). For a fixed value of r, 
as k increases, .I decreases in magnitude like k-2. Thus for a fixed E, p will approach 
the last classical turning point as k ---f co. And, in this limit, Eq. (5.12) becomes 
essentially the JWKB approximation, except for 1(1+ 1) not being replaced by 
(I + $)2 and the inclusion of the additional term 19(p) which contains the contri- 
butions of the interior regions to the exact phase shift. Thus, in this limit, the 
MVP method becomes essentially the JWKB integral. However, it is exact and 
calculates all necessary corrections to the JWKB phase shift for obtaining the 
exact phase shift to the desired order of accuracy. 

Since it rapidly reduces to the JWKB integral in the short-wavelength limit, 
the calculational time of the MVP method should definitely not be more than 
about twice that of the JWKB method in this limit. As one goes to longer wave- 
lengths, the required calculational time (relative to the JWKB method) should 
probably increase somewhat; however, one can expect the MVJ? method to be 



MODIFICATION OF THE VARIABLE PHASE METHOD 271 

either faster than or comparable to the Green’s function method [l] and the 
Numerov method [2]. This is because these two methods solve for the radial wave- 
function which is almost always more rapidly varying than the MVP phase. 

Based on Allison’s [2] comparison of the Numerov method and Gordon’s 
method, we can expect that for a single energy, the MVP method should be faster 
than Gordon’s method, since Gordon’s method is slower than the Numerov 
method. However, Gordon’s method would require knowing the potential at only 
a few preselected points, whereas in the MVP method, one must be prepared to 
evaluate the potential and its first derivative at any point, as well as the second 
derivative at p. On the other hand, if one were to calculate the phase shifts at several 
energies simultaneously [2], then Gordon’s method would probably be comparable 
to the MVP method. 

In conclusion, we see that the MVP method should be the most efficient method 
of calculating exact phase shifts in the short-wavelength limit, since it then rapidly 
approaches the JWKB integral within a few wavelengths after the last classical 
turning point. In the long-wavelength limit, we would expect it to be at least 
comparable with other methods. 

Finally, realizing that it is extremely difficult to compare different methods by 
means of their calculational time (even with the same programmer and the same 
computer), we still would like to present three different calculational times which 
should give an indication of the speed of the MVP method. We calculated the phase 
shifts of proton-on-helium scattering at 15.4 eV to a precision of 1O-3 radians, 
using the IBM 360 computer. A fourth-order Runge-Kutta integration of the 
SchrSdinger equation required about 90 set per phase shift, the JWKB phase shifts 
calculation required about 6 set per phase shift, and the fourth-order Runge-Kutta 
integration of the MVP phase required about 9 set per phase shift. Thus in this 
case, by increasing the calculational time by only about 50 % one can evaluate the 
exact phase shifts instead of the JWKB phase shifts. 
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